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bstract

all-on-ring test is widely used to measure the biaxial strength of brittle materials by often making the approximation that the pressure applied
y the ball in the central loading region is uniform. The purpose of the present study is to demonstrate the limits of such approximation by means
f piezospectroscopy and to substantiate the spectroscopic findings with calculations based on finite element modeling (FEM). In addition, we
hall discuss in some detail the validity of theoretical expressions previously developed by Kirstein and Woolley for radial and tangential bending

tresses in the case of a uniformly distributed concentric load applied at the center of the disk loading region. A comparison is also offered between
he experimentally retrieved radius of such region and those computed by theoretical models. Errors in estimating the radius of the central loading
egion, which have led in the past to controversial discussions, have been shown to play a minor role in the analysis of the overall stress field.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

Uniaxial bending is the loading configuration of the most
ommonly performed tests for evaluating the strength of ceramic
aterials. Besides their easier approach, however, bending

eometries might not appropriately re-create the multiaxial
oading conditions occurring in real service applications. In
lternative, the ball-on-ring test can be performed on thin disks
o measure the biaxial strength of brittle materials.1–9 However,
he stress distribution involved with a biaxial loading apparatus
n a brittle thin disk has not been yet fully elucidated in its com-
lete profile, mainly because of a lack of spatial resolution for the
vailable in situ stress measurement techniques (e.g., adopting
train gauge or X-ray diffraction methods).
In the last decade, piezospectroscopy (PS) has been widely
sed to measure local stress distributions both in single-
rystalline and polycrystalline materials.9–12 The PS method
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elies on the perturbation of vibrational (or energy) bands
ue to a stress field.10 Such perturbation effect can be, for
xample, evaluated by monitoring the stress-induced shift of
elected Raman or fluorescence peaks. The PS technique has
lso been commonly used to extract stress magnitudes in poly-
rystalline alumina materials, since the R1 (14,400 cm−1) and
2 (14,430 cm−1) lines of the alumina fluorescence spectrum,
hich are emitted from chromium (Cr3+) impurity sites, have

hown reliable dependence on applied stress.9–12 A comprehen-
ive description of the phenomenon was first given by Ma and
larke9 and later by other authors.11,12

In this paper, we shall revisit the mechanics of the ball-on-ring
est and attempt to locate the most precise computational proce-
ure for analyzing the related surface stress field, thus providing
tool for accurate strength analysis in ceramic polycrystals sub-

ected to a biaxial stress field. The main purpose here is to judge
bout the validity of already existing models, with emphasis

laced on explicitly describing the stress field in the central area
0 < r < b with b radius of the loading region) of the loaded plate,
hich has not been unfolded yet. For doing so, we directly mea-

ured the stress distribution by means of the PS tool, which is

dx.doi.org/10.1016/j.jeurceramsoc.2011.05.009
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hown possessing sufficient spatial resolution to conspicuously
educe smoothing effects due to the finite size of the measure-
ent probe. In this latter context, the effect of a finite probe size

s directly evaluated and deconvoluted from fluorescence spec-
ral analysis. We shall finally give an experimental estimate of
he dimensions of the loading area at the center of the sample
nd compare it with values obtained from current theories.

. Theoretical background

In a finely grained and untextured polycrystal, the PS effect
an be expressed by the following formula:

ν = Πσh (1)

here �ν is the difference between the peak wavenumber at
he stressed location and the peak wavenumber of a reference

tress-free state (i.e. the unloaded disk in our case),Π is the PS
oefficient (i.e., equal to 7.61 cm−1/GPa for the R2 line in poly-
rystalline alumina9) and σh represents the hydrostatic stress.
n the case of the biaxial stress state generated by a ball-on-ring
oading apparatus can be defined as:

h = σr + σt

3
(2)

Of interest here is that, by using an optical microprobe, Eq.
1) provides a means to measure the stress distribution inside
he loading region, as developed along any radial direction on
he surface of an alumina disk subjected to ball-on-ring test.

In the ball-on-ring test, a disk-shaped sample is supported
y a ring and loaded centrally by a ball (Fig. 1). Axisymmetric
oading of the disk in this arrangement produces radial and tan-
ential stresses on the ball-side face of the specimen. Kirstein

1

ψ =
m∑
s=1

{
ln

(
1 − 2

ar

R2 cosϕs + a2r2

R4

)
− (ν − 1)

(3 + ν)

(
r2

R2 −

+ 2m(a2/R2)

(1 + ν)
+m− 2m(ν − 1)((b

√
n/n+ 2)/R

(((ν − 1)/(3 + ν)) + 1)(3 +

Ω =
m∑
s=1

{(
(ν − 1)2

(3 + ν)2 − 1

)
ln

(
1 − 2

ar

R2 cosϕs + a2r2

R4

)
+

− (1 − (r2/R2))(1 − (a2/R2))(1 − ((a2r2)/R4))
2

(1 − 2((ar)/R2) cosϕs + ((a2r2)/R4))2 +

+m

(
(ν − 1)

(3 + ν)
− 1

)(
r2

R2 − a2

R2

)
− 4m(ν − 1)(r/

(3 + ν)(n+ 2)(
nd Woolley have given an analytical solution for both radial
nd tangential stresses as a function of the number of supporting
oints and of their angular position for 0 < r < b. In the case of
ball-on-ring apparatus, a large m number of supporting points

m
w
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an be treated as a continuous supporting line, and the equations
ritten as follows:

r = EMrt

2D
(3)

t = EMtt

2D
(4)

ith D = (Et3/12) for a disk shaped sample, t being the plate
hickness and

r = −P(1 + ν)(3 + ν)

8πm(ν − 1)
[ψ] + P(1 − ν)(3 + ν)c2

16πm(ν − 1)r2 [Ω] (5)

t = −P(1 + ν)(3 + ν)

8πm(ν − 1)
[ψ] − P(1 − ν)(3 + ν)c2

16πm(ν − 1)r2 [Ω] (6)

here

cosϕs + a2

R2

)
− (1 − (a2/R2))(1 − ((a2r2)/R4))

1 − 2(ar/R2) cosϕs + ((a2r2)/R4)

}

2m
(ν − 1)

(3 + ν)
ln
b

R
+ 2m(ν − 1)

n(3 + ν)

(
(r/R)n

(b/R)n
− 1

) (7)

nd

((a2r2)/R4))
2 − 2(a/R)2(1 − (r2/R2))

2

(1 − 2(ar/R2) cosϕs + ((a2r2)/R4))

(ν − 1)((r2/R2) − (a2/R2))
2

ν)((r2/R2) − 2(ar/R2) cosϕs + (a2/R2))

}

n

(8)

ith n being an empirical parameter = 2 in the case of a uniformly
istributed concentric load, ϕs = θ− θs = s · (2π/m), where θs is
he polar angle subtended by the sth supporting point with s = 1,
, 3, . . ., m (cf. Fig. 1).1 Eqs. (7) and (8) can be greatly simplified
y approximating with the case of a concentric (central) load
i.e., letting b/R = 0) or to the case of a load uniformly distributed
ver the entire disk (i.e., letting the ratio b/R = 1). It is important
o note that the magnitude of maximum stress at the central
osition of the loading region is always equibiaxial and given
y:

max =
[

3P(1 + ν)

4πt2

]{
1 + 2

[
ln
a

b

]
+
[

(1 − ν)a2

(1 + ν)R2

][
1 − b2

2a2

]}
(9)

Unlike Eqs. (3) and (4), the maximum bending stress in Eq.
9) is independent of the number of supporting points. In addi-
ion, for a concentric point load, the problem of the stresses in
he loading region has been solved by introducing the approxi-
ation of a region of constant stress (i.e., as given by Eq. (9))
ith finite dimensions (e.g., in Ref. [2]).
For the r > b study case, Vitman and Pukh7 offered a stress

istribution model taking into account the stiffening effect of the
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Fig. 1. Schematics of the used ball-on-ring testing configuration showing the
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in comparison with the disk thickness. This argument will be
eometrical parameters involved with the calculation of radial and tangential
tresses.

nnular region outside the ring region. The resulting equations
re:

r = 3P(1 + ν)

4πt2

[
2 ln

a

r
+ (1 − ν)

2(1 + ν)

{
a2 − r2

a2

}
b2a2

r2R2

]
(10)

t = 3P(1 + ν)

4πt2

[
2 ln

a

r
+ (1 − ν)

2(1 + ν)

{
4 − b2

r2

}
a2

R2

]
(11)

here b is the radius of the loading area (i.e., otherwise called
onstant stress region), R is the radius of the disk and a the
adius of the supporting points. Note that as in the maximum
tress case, also in the region r > b, the stresses are independent
f the number of support points. Note that, whatever the selected
nalytical procedure, in order to calculate stress magnitudes, one
eeds to retrieve the value of the radius of the loading region, b.
he parameter b can be computed according to Westergaard8:

b = t for Z > 1.724t

b =
√

(1.6Z2 + t2) − 0.675t for Z < 1.724t

b = 0.325t for Z → 0

(12)

here Z is the contact radius of the loading ball, which can be
etrieved according to a Hertzian model for the (elastic) contact
adius in the case of contact between a plate and a ball3:

=
(

3P · rball

4E′

)1/3

with
1

E′ =
[

1 − ν2
disk

Edisk

]
+
[

1 − ν2
ball

Eball

]

(13)

here P is the load, rball is the radius of the loading ball, and Edisk
nd Eball are the Young’s moduli of disk and ball, respectively.

On the other hand, Shetty et al.2 determined the radius of the
oading region b by using contact stress theory, i.e., assuming

� t and that both ball radius and load are not affecting b sig-
ificantly. As a result, these researchers obtained an equivalent
adius of contact b ≈ t/3, which can be used in place of b and

q
d
s
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escribes the stresses upon biaxial loading in the ball-on-ring
est.

The differences in the interpretation and assignment of b
ave been the origin for controversies and debates, and the
uitability of the available models has been discussed by de

ith and Wagemans,3 who confirmed the validity of the Wester-
aard approximation measuring the bending displacements with
train gauges, while loading a thick glass plate in a ball-on-ring
pparatus.

Despite the experimental evidence provided in the paper by
e With and Wagemans,3 in almost all literature papers, the
tress distribution caused by the ball-on-ring test in the loading
entral area (0 < r < b) is approximately determined by a region
f uniform pressure. Actually, the origin of such approximation
rises from b being conspicuously smaller than the area probed
y strain gauges and, thus, from a lack of knowledge of the
ctual stress distribution in such a tiny area, which we shall now
rove to be not uniform in support to the data by de With and
agemans.3 Note that a crude approximation in assuming the

tress distribution in the central loading region might lead to a
angible error in understanding the material behavior under the
iaxial load and, thus, in assessing the strength of the tested
aterial.
PS experiments using an optical microprobe thus give us a

hance to test Kirstein and Woolley’s solution for 0 < r < b (Eqs.
3) and (4)) and Vitman and Pukh’s solution for r > b (Eqs. (10)
nd (11)). Obviously, the former stress distribution is expected
o be more sensitive to the parameter b, than the region r > b.
n order to validate the PS results, we also carry out here a
omparison with a stress distribution obtained by a conventional
EM analysis. The geometry of the meshed disk sample is shown

n Fig. 2.

. Experimental procedure

The alumina polycrystalline sample was prepared from
commercially available alumina powder (Almatis GmbH,
ermany). After milling, the sample was pressed into disks at
00 MPa, sintered at 1580 ◦C for 2 h, hot-isostatically pressed
HIPed) under 200 MPa at 1580 ◦C, and finally post-heat treated
t 1580 ◦C for 2 h. The average grain size of the sintered poly-
rystal was 1 �m. The samples were then machined into disks
= 14 mm and t = 0.820 mm in dimension (i.e., according to the

eometry shown in Fig. 1) and finely polished (with diamond
aste of 1 �m) on both surfaces.

Fluorescence spectra were excited using an argon ion laser
perating at 488 nm with an optical power at the sample surface
f 6 mW. Such power was low enough to prevent laser-induced
eating on the sample surface. The microscope objective was
long working distance 100×, which produced a theoretical

pot diameter of 1 �m in the focal plane of the sample. The
aser penetration distance (about 30 �m), which has an impact
n the stress gradient in depth, can be considered here small
uantitatively substantiated in a later section with providing a
econvolution procedure on the measured profile of fluorescence
hifts. The emitted luminescence was collected and analyzed by
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Fig. 2. Meshed geometry and boundary conditions for simulating the ball-o

Raman microprobe equipment (T-64000, Horiba-Jobin Yvon,
okyo, Japan). The chromophoric luminescence doublet emitted
rom the alumina polycrystal was fitted to two Voigtian curves
n order to precisely locate individual band maxima. Spectral
tting procedures were the same as those reported in previous

iterature.9–12 By moving the sample under the microprobe by
eans of an automatized stage (with a step unit of 5 �m), we

erformed several diametral line-scans from the center of the
ample along an arbitrarily selected radial direction. Fluores-
ence spectra were collected at exactly the same locations with
he disk both in the unloaded configuration and under 52, 105.5,
50.1, and 200 N peak loads. Stresses were calculated, accord-
ng to Eq. (1), by subtracting from the locally recorded spectral
osition of the chromophoric R2 level peak the position of the
ame band in the unloaded configuration.

All the equations involved with the present investigation were
olved numerically, with the aid of a commercially available
omputational software package (Mathematica 7.0; Wolfram
esearch Inc., Champaign, IL).

Calculations involved with the FEM analysis were conducted
ith the code Abaqus 6.7 (ABAQUS, Dassault Systémes, Wood-

and Hills, CA).

. Results and discussion

.1. Experimentally and theoretically assessed stress field

To judge whether or not available analytical solutions are
pplicable to the ball-on-ring test, we performed a series of 6 mm
adial fluorescence line-scans along the disk diameter as function
f applied load. With the PS measurement tool, applied to the
uorescence emission of alumina, only the hydrostatic part of

he stress tensor can be assessed. It follows that our experimental
ata should be compared to the radial and tangential stresses (i.e.,
s given by Vitman and Pukh for r > b and Kirstein and Wooley
or 0 < r < b) after extracting the hydrostatic component of the
tress tensor from these models. b was experimentally measured
y fitting iteratively the analytical curves given by Eqs. (3)–(6) to
he experimental stress values obtained by means of PS. Table 1
ives the full set of results for the b value as obtained experi-

entally and as calculated according to the available analytical
odels. An average value of 0.273 mm for b upon applying

eavy loads could be found, which is very close to the value of
/3 (t = 0.820 mm for the present sample), as proposed by Shetty

(
t
t
i

test by FEM and calculating the related stresses in loaded configurations.

t al. There are not significant differences among the b values
hown in Table 1, thus confirming the approach proposed by
e With and Wagemans,3 who simply retrieved b by fitting the
xperimental results to Eqs. (10) and (11). In other words, an
greement could be found for the radial and tangential stresses
iven by Vitman and Pukh and by Kirstein and Wooley for r = b.

Fig. 3 shows the results of the PS analysis on the loaded
ample in comparison to theoretical calculations and FEM sim-
lation. It is clear that the approximation of “uniform constant”
tress in the 0 < r < b region is not appropriate and can lead to an
rror in the order of 10% in calculating the stress magnitude at
he edges of the central zone. On the other hand, PS results, theo-
etical and FEM computations show negligible (i.e., in the range
f 1%) discrepancy outside the central area. Theoretical predic-
ions according to Eqs. (9)–(12) fit within a degree of accuracy
he experimental data (cf. Table 1).

.2. Effect of the finite size of the fluorescence probe

Note that, given the high transparency of the polycrystalline
lumina sample, the finite size of the laser probe might also
ffect the precision of the measurement.13 Considering that in
he focal plane the probe diameter is only about 1 �m, we shall
gnore here the probe effect in the measurement plane and only
ssess the effect of a finite probe depth (i.e., about 30 times larger
han the diameter). The intensity distribution of the fluorescence
mission within the laser probe can be described by a probe
esponse function, B(z, z0), which expresses the contribution to
he entire emission intensity of the light scattered from the point
(z) when the incident beam is focused at the point P0(z0)14,15:

(z, z0) ∝ p2

(z− z0)2 e
−2αz (14)

here p is the probe response parameter (in polycrystalline alu-
ina with grain size of about 1 �m, p = 75 �m13) and α is the

bsorption coefficient of the material at the incident wavelength.
ote that the term 2α in Eq. (14) should be substituted by the

um of the absorption coefficients for incident and emitted light
13
i.e., 2α= 0.036 for polycrystalline alumina), when the absorp-

ion conditions for incident and emitted light are different. Then,
he distribution within the probe of the externally applied load
ntroduces an hydrostatic stress state, σh(z0), which is weight-
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Table 1
Comparison between calculated (i.e., by Eqs. (9) and (12)) and experimental stress and b values at different loading levels.

Load P (N) b Eq. (12) (mm) bexp (mm) σh Eq. (9) (MPa) �h max exp (MPa)

52.0 0.273 0.3 ± 0.1 93 101 ± 20
105.5 0.273 0.275 ± 0.03 203 186 ± 19
1 0.02
2 0.02

a
t

σ

t
t

F
s
t
c
c
w
a

f
c
d

p
s

50.1 0.273 0.273 ±
00 N 0.273 0.273 ±

veraged by the probe response function (Eq. (14)), according
o the following equation:

h(z0) =
∫∞

0 B(z, z0)σh(z) dz∫∞
0 B(z, z0) dz

(15)
Numerically solving the above integral by introducing as a
rial function the Eq. (2) (with the stress functions according
o Eqs. (3) and (4)), one can obtain the “true” stress function

ig. 3. (a) PS experimental stress distribution along a radial direction on the
urface of a disk sample loaded by 150.1 N in the ball-on-ring jig is compared
o a theoretical prediction and to FEM computations; (b) an enlarged plot of the
entral area of the loaded sample. A constant line shows the approximation of
onstant stress in the central zone of diameter 2b. A deconvoluted stress function,
hich takes into account the smoothing effect by the finite laser probe depth, is

lso shown as computed according to Eq. (15).
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291 275 ± 16
385 372 ± 18

rom its probe-averaged value at any point geometrically coin-
ident with the center of the probe in the focal plane. Such a
econvoluted stress is also shown in Fig. 3.

The present assessment of the averaging effect by the laser
robe shows that, in the present ball-on-ring configuration, the
tress gradient along the in-depth axis gives an impact on stress
agnitude information in the order of about 4%, thus a minor

ontribution as compared to the experimental scatter due to the
olycrystalline nature of the solid (cf. Fig. 3). Thus, we con-
rmed the results obtained in the previous section, showing the
alidity of the Kirstein and Wooley’s solution for 0 < r < b as
ompared to the “constant” stress region model.

. Conclusion

Theoretical models for calculating the stresses developed in
polycrystalline alumina plate loaded in a ball-on-ring biaxial
exure jig have been revisited with emphasis placed to unfold

he stress field at the center of the disk. Stresses were exper-
mentally measured with high spatial resolution according to
he PS method applied to the chromophoric emission from alu-

ina and a comparison carried out with theoretical equations by
arious authors and with stresses simulated via finite element
odeling. From the results, it appears that despite the presence

f a uniform pressure within the loading region (i.e., 0 < r < b),
onsidering the stress distribution as a constant is incorrect. On
he other hand, the Kirstein and Wooley’s solution for 0 < r < b
howed very good agreement with the stress distribution data
btained by the PS method, provided that a large enough number
f supporting points are used in the computation to approximate
he supporting action of a continuous ring. FEM simulation also
ndicated a complex stress distribution within a tiny interval sur-
ounding the b radius value. The maximum value calculated by
nite element modeling was only 1% lower than that predicted
y theory and 5% lower than that measured by means of PS
fter spatial deconvolution of the probe. The b value experi-
entally retrieved with micrometric spatial resolution was in

ood agreement with previous assessments made by de With
nd Wagemans.3
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